翻訳と辞書
Words near each other
・ Toelgyfaloca albogrisea
・ Toelgyfaloca circumdata
・ Toell the Great
・ Toen
・ Toen 't licht verdween
・ Toen Was Geluk Heel Gewoon
・ Toenailing
・ Toeni Department
・ Toensing (surname)
・ Toenut
・ Toepen
・ Toepfer International
・ Toepisa Gewog
・ Toepler pump
・ Toeplitz
Toeplitz algebra
・ Toeplitz Hash Algorithm
・ Toeplitz matrix
・ Toeplitz operator
・ Toeprinting assay
・ Toernich
・ Toes (Lights song)
・ Toes (Zac Brown Band song)
・ Toes in Tempo
・ Toes in the Sand Recordings
・ Toesca metro station
・ Toeshey
・ TOET (psychedelic)
・ Toetag Pictures
・ Toeterville, Iowa


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Toeplitz algebra : ウィキペディア英語版
Toeplitz algebra
In operator algebras, the Toeplitz algebra is the C
*-algebra
generated by the unilateral shift on the Hilbert space ''l''2(N). Taking ''l''2(N) to be the Hardy space ''H''2, the Toeplitz algebra consists of elements of the form
:T_f + K\;
where ''Tf'' is a Toeplitz operator with continuous symbol and ''K'' is a compact operator.
Toeplitz operators with continuous symbols commute modulo the compact operators. So the Toeplitz algebra can be viewed as the C
*-algebra extension of continuous functions on the circle by the compact operators. This extension is called the Toeplitz extension.
By Atkinson's theorem, an element of the Toeplitz algebra ''Tf'' + ''K'' is a Fredholm operator if and only if the symbol ''f'' of ''Tf'' is invertible. In that case, the Fredholm index of ''Tf'' + ''K'' is precisely the winding number of ''f'', the equivalence class of ''f'' in the fundamental group of the circle. This is a special case of the Atiyah-Singer index theorem.
Wold decomposition characterizes proper isometries acting on a Hilbert space. From this, together with properties of Toeplitz operators, one can conclude that the Toeplitz algebra is the universal C
*-algebra
generated by a proper isometry; this is ''Coburn's theorem''.
== References ==



抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Toeplitz algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.